陶哲轩又发新论文了!
这也是时隔一年,他再次独立发表新论文。(arXiv显示上一篇独作论文发表时间是在去年2月)
这篇新论文依旧与陶哲轩钻研的数论领域有关。
它证明了著名数学家埃尔德什·帕尔(Erdős Pál)提出的一个交错素数级数猜想,在哈代-李特尔伍德素数k元组猜想成立的条件下,是成立的。
(当然,哈代-李特尔伍德素数k元组猜想也是一个悬而未解的猜想,因此这项研究只是部分证明,并没有完全解决)
这项研究,还用到了他在几年前与合作者共同提出的一个素数随机模型。
一起来看看。
证明了什么样的猜想?
核心来说,这篇新论文要证明的,是埃尔德什提出的一个关于交错素数级数收敛性的猜想。
这个猜想与一个长这样的交错级数有关,其中pn是第n个素数:
但交错级数并不一定收敛,因此需要具体级数具体判断,这次陶哲轩证明的就是交错级数中的一个特殊类型,即an是素数pn的倒数,这个级数是收敛的。
不过,还有个前提条件——在哈代-李特尔伍德素数k元组猜想成立的条件下。
哈代-李特尔伍德素数k元组猜想,由英国科学家哈代和李特尔伍德提出,它预测了给定差值集合的k个素数出现的频率。
猜想认为,存在两个绝对常数ε>0和C>0,对于所有x≥10、所有k≤(log log x)^5、和所有由不同整数h1,…,hk组成的k元组:
使得这个式子成立:
不过,这个猜想至今尚未解决。
这次陶哲轩直接在假设它成立的基础上,证明了交错素数级数收敛性猜想的成立。整个过程大约可以分为四步:
首先,基于Van der Corput差分定理来降低素数计数间隔的长度。
由于证明这个猜想,实际上需要估计区间[1,x]内素数个数的奇偶性分布,因此使用差分定理的目的,能将它转化为仅考虑较短区间内素数个数奇偶性的问题。
转化为这个问题之后,实际上就能用哈代-李特尔伍德素数k元组猜想来证明问题成立。
因此,接下来论文在假设哈代-李特尔伍德素数k元组猜想成立的基础上,估计了短区间内k个素数的概率。
然后,陶哲轩使用几年前与两位数学家William Banks和Kevin Ford共同建立的随机素数模型,来建模素数分布。
最后基于这个模型建立的分布证明猜想。
这篇博客发出后不久,就有网友赶来点赞,表示自己也在从用另一种方法尝试解决这个猜想:
One More Thing
值得一提的是,2004年陶哲轩和本·格林(Ben Joseph Green)提出的著名格林-陶定理,也是基于埃尔德什·帕尔(Erdős Pál)另一个更著名的等差数列猜想而来。
其中,埃尔德什等差数列猜想如下:
格林-陶定理进一步将猜想范围缩小到他们研究的素数范围内,相当于埃尔德什等差数列猜想的一个“特例”:
埃尔德什为解决这个等差数列猜想悬赏了5000美元。
这些年除了陶哲轩以外,也有不少数学家致力于它的研究,例如Thomas Bloom和Olof Sisask。他们在2020年,证明了整数无穷数列一定包含长度至少为三的等差数列,将这个问题又向前推进了一步。
感兴趣的小伙伴们可以挑战一下了(手动狗头)
新论文地址:
https://arxiv.org/abs/2308.07205
参考链接:
[1]https://arxiv.org/abs/2202.03594
[2]https://mathstodon.xyz/@tao/110891757976027117